Triangulations and Related Problems

Delaunay Triangulation

- Reminder - a triangulation which maximize the minimum angle in the triangulation.
- A triangle is Delaunay iff the circle through its vertices is empty of other sites.

Other kinds of graphs

- Euclidean minimum spanning tree (EMST) - A set of edges spanning the a set of points with the minimum total edge length.
- Relative neighborhood graph $(R N G)$ - An edge (p, q) is a part of the RNG iff

$$
d(p, q) \leq \min _{r \in P, r \neq p, q} \max (d(p, r), d(r, q))
$$

- Gabriel Graph $(G G)$ - Two points p and q are connected by an edge of the GG if and only if the disc with diameter $p q$ does not contain any other point of P.

Other kinds of graphs

- Prove that

$$
E M S T \subseteq R N G \subseteq G G \subseteq D T
$$

- The last relation is part of the HW, we will show the other two.
- We will start by understanding the $R N G$ better.

Relative neighborhood graph

- Relative neighborhood graph $(R N G)$ - An edge (p, q) is a part of the RNG iff

$$
d(p, q) \leq \min _{r \in P, r \neq p, q} \max (d(p, r), d(r, q))
$$

- Claim: The edge (p, q) is part of the $R N G$ iff the lune of p and q is empty.
- It is easy to see from the definition.

$E M S T \subseteq R N G$

- Let $(p, q) \in \operatorname{EMST}(P)$, and assume that $(p, q) \notin R N G(P)$
- That means that there exist point $r \in \operatorname{lune}(p, q)$

- The edge (p, q) is the largest in the circle $p q r$, and thus, can not be part of $E M S T(P)$.
- Recall Algo 1 MST rules

$R N G \subseteq G G$

- Reminder: $(p, q) \in \operatorname{RNG}(P)$ iff lune (p, q) is empty. $(p, q) \in G G(P)$ iff the the disc with diameter $p q$ does not contain any other point of P.

- The circle is subset of the lune, and thus the claim.

Euclidean Traveling Salesman Problem

- The traveling salesman problem (TSP) is to compute a shortest tour visiting all points in a given point set.
- The traveling salesman problem is NP-hard.
- In the Euclidean version the distances are the Euclidean distance.
- Show how to find a tour whose length is at most two times the optimal length.

Euclidean Traveling Salesman Problem

- Claim: The optimal tour length is longer (or equal) to the EMST weight
- Proof: Consider the graph created by the TSP tour, this graph spans the set of points and thus its weight is greater than the EMST weight.
- Claim: The length of a DFS traversal over the EMST is at most twice the length of the EMST (and thus, at most twice the length of the optimal tour).
- Proof: Each edge is traversed at most twice.
- TSP Approximation algorithm: Find the EMST, and return a DFS traversal tour.
- Complexity?

Computing the EMST

- What is the best algorithm to compute an EMST?
- Using Prim's/Kruskal's algorithm the complexity will be $O\left(n^{2}\right)$.
- Why?
- Can we do better?
- Recall that $E M S T \subseteq D T$
- Compute the DT of the set of points $-O(n \log n)$
- Compute the EMST of the DT using Prim's/Kruskal's algorithm $-O(n \log n)$
- Total complexity - $O(n \log n)$

