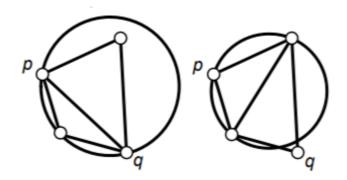
Triangulations and Related Problems

Delaunay Triangulation

- Reminder a triangulation which maximize the minimum angle in the triangulation.
- A triangle is Delaunay iff the circle through its vertices is empty of other sites.

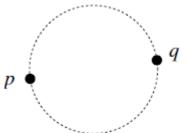


Other kinds of graphs

- Euclidean minimum spanning tree (EMST) A set of edges spanning the a set of points with the minimum total edge length.
- Relative neighborhood graph (RNG) An edge (p,q) is a part of the RNG iff

$$d(p,q) \le \min_{r \in P, r \ne p, q} \max(d(p,r), d(r,q))$$

• Gabriel Graph (GG) - Two points p and q are connected by an edge of the GG if and only if the disc with diameter pq does not contain any other point of P.



Other kinds of graphs

Prove that

$$EMST \subseteq RNG \subseteq GG \subseteq DT$$

- The last relation is part of the HW, we will show the other two.
- We will start by understanding the RNG better.

Relative neighborhood graph

• Relative neighborhood graph (RNG) – An edge (p,q) is a part of the RNG iff

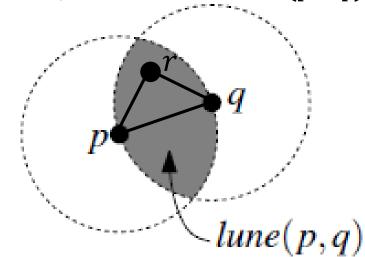
$$d(p,q) \le \min_{r \in P, r \ne p, q} \max(d(p,r), d(r,q))$$

lune(p,q)

- Claim: The edge (p,q) is part of the RNG iff the lune of p and q is empty.
- It is easy to see from the definition.

$EMST \subseteq RNG$

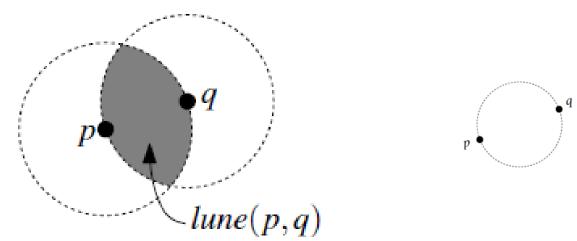
- Let $(p,q) \in EMST(P)$, and assume that $(p,q) \notin RNG(P)$
- That means that there exist point $r \in lune(p,q)$



- The edge (p,q) is the largest in the circle pqr, and thus, can not be part of EMST(P).
 - Recall Algo 1 MST rules

$RNG \subseteq GG$

- Reminder: $(p,q) \in RNG(P)$ iff lune(p,q) is empty.
- $(p,q) \in GG(P)$ iff the the disc with diameter pq does not contain any other point of P.



• The circle is subset of the lune, and thus the claim.

Euclidean Traveling Salesman Problem

- The *traveling salesman problem* (TSP) is to compute a shortest tour visiting all points in a given point set.
- The traveling salesman problem is NP-hard.
- In the Euclidean version the distances are the Euclidean distance.
- Show how to find a tour whose length is at most two times the optimal length.

Euclidean Traveling Salesman Problem

- Claim: The optimal tour length is longer (or equal) to the EMST weight
- Proof: Consider the graph created by the TSP tour, this graph spans the set of points and thus its weight is greater than the EMST weight.
- Claim: The length of a *DFS* traversal over the *EMST* is at most twice the length of the *EMST* (and thus, at most twice the length of the optimal tour).
- Proof: Each edge is traversed at most twice.
- TSP Approximation algorithm: Find the EMST, and return a DFS traversal tour.
- Complexity?

Computing the EMST

- What is the best algorithm to compute an *EMST*?
- Using Prim's/Kruskal's algorithm the complexity will be $O(n^2)$.
 - Why?
- Can we do better?
- Recall that $EMST \subseteq DT$
- Compute the DT of the set of points $O(n \log n)$
- Compute the EMST of the DT using Prim's/Kruskal's algorithm $O(n \log n)$
- Total complexity $O(n \log n)$